

B.Sc. (Hons) in Computer Science (Artificial Intelligence & Robotics)

SISTER NIVEDITA UNIVERSITY

SYLLABUS

FOR

THREE YEARS BACHELOR OF SCIENCE HONOURS DEGREE COURSE IN COMPUTER SCIENCE (ARTIFICIAL

INTELLIGENCE & ROBOTICS)

UNDER UGC-CBCS SYSTEM

2020

B.Sc. (Hons) in Computer Science (Artificial Intelligence & Robotics)

Credit Definition

Туре	Duration (in Hour)	Credit
Lecture (L)	1	1
Tutorial (T)	1	1
Practical (P)	2	1

Category Codification with Credit Break up

Definition of Category	Code	No	Credit
Basic Science	BS	1	XX
Engineering Science	ES	2	XX
Professional Core	PC	3	XX
Professional Elective (Discipline Specific) PE		4	XX
Open Elective (General Elective)	OE	5	XX
Humanities & Social Science including Management	HSM	6	XX
Project Work / Seminar / Internship / Entrepreneurship	PSE	7	XX
Mandatory / University Specified (Environmental Sc. / Induction		8	vy
Training / Indian Constitution / Foreign language)	1005	0	ΛΛ
Total			XXX

Subject Codification Nomenclature

SEMESTER: I

Mandatory Induction Program – Duration 3 weeks

SI N Course Title		Code	Cred	Туре		
No	course rule	Coue	it	L	Т	Р
1	Digital Electronics	1203211	6	3	1	4
2	Introduction to C-Programming	1203212	6	4	0	4
3	Mathematics- I	1191111	4	3	1	0
4	Generic Elective	*	4	3	1	0
5	Communicative English	1216115	2	2	0	0
6	Mentored Seminar – I	1207311	1	1	0	0
7	Foreign Language – I (German /Spanish /Japanese)	1278111/	2	2	0	0
		1278112/				
		1278113				
	Total Credit 25					

SYLLABUS OUTLINE:

PAPER NAME: Digital Electronics

UNIT I:	Number Systems & Codes (6L)
TOPICS	Decimal Number, Binary Number, Octal Number, Hexadecimal Number,
	Conversion – Decimal to Binary, Binary to Decimal, Octal to Binary, Binary to
	Octal, Hexadecimal to Binary, Binary to Hexadecimal, Octal to Binary to
	Hexadecimal, Hexadecimal to Binary to Octal; Floating Point Number
	Representation, Conversion of Floating Point Numbers, Binary Arithmetic, 1's
	and 2's Complement, 9's and 10's Complement, Complement Arithmetic, BCD,
	BCD addition, BCD subtraction, Weighted Binary codes, Non-weighted codes,
	Parity checker and generator, Alphanumeric codes
UNIT II:	Logic Gates (2L)

TOPICS	OR, AND, NOT, NAND, NOR, Exclusive - OR, Exclusive - NOR, Mixed logic
UNIT III:	Boolean Algebra (4L)
TOPICS	Boolean Logic Operations, Basic Law of Boolean Algebra, Demorgan's
	Theorem, Principle of
	Duality
UNIT IV:	Minimization Techniques (5L)
TOPICS	Sum of Products, Product of Sums, Karnaugh Map (up to 4 variables)
UNIT V:	Multilevel Gate Network (3L)
TOPICS	Implementation of Multilevel Gate Network, Conversion to NAND-NAND and
	NOR-NOR Gate Networks
UNITVI:	Arithmetic Circuits (5L)
TOPICS	Half Adder, Full Adder, Half Subtractor, Full Subtractor, Carry Look Ahead
	Adder, 4-Bit Parallel Adder
UNITVII:	Combinational Circuits (5L)
TOPICS	Basic 2-input and 4-input multiplexer, Demultiplexer, Basic binary decoder,
	BCD to binary converters, Binary
	to Gray code converters, Gray code to binary converters, Encoder
UNITVIII:	Sequential Circuits (5L)
TOPICS	Introduction to sequential circuit, Latch, SR Flip Flop, D Flip Flop, T Flip Flop,
	JK Flip Flop, Master Slave Flip
	Flop
UNITIX:	Basics of Counters (2L)
TOPICS	Asynchronous (Ripple or serial) counter, Synchronous (parallel) counter
UNIT X:	Basics of Registers (3L)
TOPICS	SISO, SIPO, PISO, PIPO, Universal Registers

Suggested Books:

- 1. Digital Circuit & Design, Salivahan, VIKAS
- 2. Digital Design, M. Morris. Mano & Michael D. Ciletti, PEARSON
- 3. Fundamentals of Digital Circuits; Anand Kumar; PHI
- 4. Digital Electronics; Tokheim; TMH
- 5. Digital Electronics; S. Rangnekar; ISTE/EXCEL

PAPER NAME: Introduction to C-Programming

UNITI:	Overview of C: History of C, Importance of C, Structure of a C Program.
TOPICS	Elements of C: C character set, identifiers and keywords, Data types, Constants and
	Variables, Assignment statement, Symbolic constant.
	Input/output: Unformatted & formatted I/O function in C, Input functions viz. scanf(),
	getch(), getche(), getchar(), gets(), output functions viz. printf(),putch(), putchar(),
	puts().
UNITII:	Operators & Expression: Arithmetic, relational, logical, bitwise, unary, assignment,
TOPICS	conditional operators and special operators. Arithmetic expressions, evaluation of
	arithmetic expression, type casting and conversion, operator hierarchy & associativity.
	Decision making & branching: Decision making with IF statement, IF-ELSE
	statement, Nested IF statement, ELSE-IF ladder, switch statement, goto

	statement
UNITIII:	Decision making & looping: For, while, and do-while loop, jumps in loops, break,
TOPICS	continue statement.
	Functions: Definition, prototype, passing parameters, recursion. The C Preprocessor.
UNITIV:	Storage classes in C: auto, extern, register and static storage class, their scope, storage,
TOPICS	& lifetime.
	Arrays: Definition, types, initialization, processing an array, passing arrays to functions,
	Strings & arrays.
	Pointers: Pointers and address, Pointers and function arguments, Pointers and arrays,
	Address arithmetic, Character pointer arrays, Pointers and functions, Pointer arrays,
	Pointers to pointers, Multidimensional arrays, initialization of pointer arrays, Pointer vs.
	Multi-dimensional arrays, Command-line arguments, Pointer to functions.
UNITV:	Structures and I/O: Basic of structures, Structures and functions, Arrays of
TOPICS	structures, Pointers to structures, Self- referential structures, Table lookup, Type
	of, unions and bit-fields. Input and Output: Standard input and output, formatted
	output-Print, Variable length argument lists, File access, File descriptor, Low
	level I/O- Read and Write, Open, Create, Close.

Suggested Books:

- 1. Programming with C, Gottfried, TMH
- 2. Practical C Programming, Oualline, SPD/O'REILLY
- 3. Let us C-YashwantKanetkar.
- 4. Programming in C- Ashok N Kamthane
- 5. The C Programming Lang., Pearson Ecl Dennis Ritchie.

DSE – 1: Mathematics –I

UNIT I (10 lectures)

Matrix Algebra- Introduction & definition, properties of matrix, special type of matrices, arithmetic of matrices, symmetric & skew-symmetric matrices, orthogonal matrices, singular and non-singular matrices with their properties, Trace of a matrix, Eigen value and Eigen vector computation, Inverse of a matrix and related properties, numerical problems solving.

UNIT II (10 lectures)

Differential Calculus: Review of limit, continuity and differentiability, L-Hospital rule, Leibnitz rule, successive differentiation, Rolle's theorem, Mean value theorem, Taylor series expansion, Function of several variables, Euler's theorem on homogeneous function, Partial differentiation, Jacobian, Maxima and Minimum of functions of one and two variables.

UNIT III (10 lectures)

Integral Calculus: Review of integration and definite integral. Differentiation under integral sign, double integral, change of order of integration, transformation of variables. Beta and Gamma functions: properties and relationship between them.

Differential Equations: Exact differential equations, integrating factors, change of variables, Total differential equations, Differential equations of first order and first degree, Differential equations of first order but not of first degree, Equations solvable for x, y, q, Equations of the first degree in x and y, Clairaut's equations. Higher Order Differential Equations: Linear differential equations of order n, Homogeneous and non-homogeneous linear differential equations of order n with constant coefficients.

SUGGESTED READING:

- Lay David C: Linear Algebra and its Applications, Addison Wesley, 2000.
- Schaum's Outlines: Linear Algebra, Tata McGraw-Hill Edition, 3rdEdition, 2006.
- Searle S.R: Matrix Algebra Useful for Statistics. John Wiley & Sons., 1982.
- Gorakh Prasad: Differential Calculus, PothishalaPvt. Ltd., Allahabad (14th Edition 1997).
- Gorakh Prasad: Integral Calculus, PothishalaPvt. Ltd., Allahabad (14th Edition 2000).
- David C. Lay: Linear Algebra and Its Applications, 3rdEdn, Pearson Education, Asia.

SI	SI Course Title		Credit	Туре		
No	course mite	coue	creat	L	Т	P
1	Computer Architecture	1201221	6	3	1	4
2	Data Structures with Python	1201222	6	4	0	4
3	Mathematics II	1192121	4	3	1	0
4	Generic Elective	*	4	3	1	0
5	Environmental Science	1154121	2	2	0	0
6	Mentored Seminar – II	1205121	1	1	0	0
7	Foreign Language – II	1276121/	2	2	0	0
	(German /Spanish /Japanese)	1276122/				
		1276123				
Total Credit			25			

SEMESTER: II

SYLLABUS OUTLINE:

PAPER NAME: Computer Architecture

UNITI:	1.Number Systems – decimal, binary, octal, hexadecimal, alphanumeric
TOPICS:	representation, 2. Complements – 1's complement, 2' complement, 9's
	complement, 10' complement, (r-1)'s complement, r's complement, 3. Fixed
	point representation – Integer representation, arithmetic addition, arithmetic
	subtraction, overflow, decimal fixed point representation, 4. Floating point
	representation, 5. IEEE 754 floating point representation
UNITII:	Computer arithmetic (5L)
TOPICS:	1. Addition algorithm of sign magnitude numbers, 2. Subtraction algorithm of

	sign magnitude numbers, 3. Addition algorithms of signed 2's complement data,
	4. Subtraction algorithms of signed 2's complement data, 5. Multiplication
	algorithm, Booth's algorithm, 6. Division algorithm
UNITIII:	Register transfer and micro-operations (5L)
TOPICS	1. Register transfer language, 2. Register transfer, 3. Bus system for registers, 4.
	Memory transfers- memory read, memory write, 5. Micro operations - register
	transfer micro operations, arithmeticmicro operations, logic micro operations,
	shift micro operations, 6. Binary adder, binary adder, subtractor, binary
	incrementer, arithmetic circuit for arithmetic micro operations, 7. One stage logic
	circuit, 8. Selective set, Selective complement, Selective clear, Mask, Insert,
	Clear
UNITIV:	Basic Computer organization and design (4L)
TOPICS	1. Instruction codes, 2. Direct address, Indirect address & Effective address, 3.
	List of basic computer registers, 4. Computer instructions: memory reference,
	register reference & input – output instructions, 5. Block diagram & brief idea of
	control unit of basic computer, 6. Instruction cycle
UNITV:	Micro programmed control (2L)
TOPICS	1. Control memory, 2. Address sequencing, 3. Micro program examples
UNITVI:	Central processing unit (5L)
TOPICS	1. General register organization, 2. Stack organization, Register stack, Memory
	stack, Stack operations – push & pop, 3. Evaluation of arithmetic expression
	using stack, 4. Instruction format, 5.Types of CPU organization (single
	accumulator, general register & stack organization) & example of their
	instructions, 6. Three, two, one & zero address instruction, 7. Definition and
	example of data transfer, data manipulation & program control instructions, 8.
	Basic idea of difference between $\text{DISC} \approx \text{CISC}$
UNITVII.	Dinalina and vestor processing (21)
UNIT VII:	Pipeline and vector processing (5L)
TOPICS	1. Paraner processing, 2. Frynn s classification, 5. Pipelining, Example of ningling, space time diagram, speedup 4. Pasia idea of arithmetic ningling
	pipeline, space time diagram, speedup, 4. Basic idea of antimetic pipeline,
UNITVIII	Input output organization (6L)
TOPICS	1 Deripheral devices 2 Input output interface 3 Isolated I/O Memory
TOPICS	1. Feripieral devices, 2. Input – output interface, 5. Isolated 1/O, Memory mapped I/O (A synchronous data transfer: stroke & bandshaking 5
	Programmed I/O 6 Interrupt initiated I/O 7 Basic idea of DMA & DMAC 8
	Input _ output processor
	Memory organization (6L)
TOPICS	1 Memory hierarchy 2 Main memory definition types of main memory types
TOTICS	of RAM ROM difference between SRAM & DRAM 3 Cache memory Cache
	memory mapping – Direct Associative Set Associative 4 CAM hardware
	organization of CAM. 5. Virtual memory, mapping using pages, page fault
	mapping using segments. TLB. 6. Auxiliary memory. diagrammatic
	representation of magnetic disk & hard disk drive. 7. Definitions of seek time.
	rotational delay, access time, transfer time, latency
L	

Suggested Books:

1. Computer System Architecture, M. Morris Mano, PEARSON

- 2. Computer Organization & Architecture –Designing For Performance, William Stallings, PEARSON
- 3. Computer Architecture & Organisation, J.P. Hayes, TATA MCGRAW HILL
- 4. Computer Organization and Architecture, T. K. Ghosh, TATA MCGRAW-HILL
- 5. Computer Architecture, BehroozParhami, OXFORD UNIVERSITY PRESS

PAPER NAME: Data Structure with Python

UNITI:	Introduction to Python (12L)
TOPICS	Introduction to Python
	Python variables, expressions, statements:
	Variables, Keywords, Operators & operands, Expressions, Statements, Orderof
	operations, String operations, Comments, Keyboard input, Example programs
	Functions: Type conversion function, Math functions, Composition of
	functions, Defining own function, parameters, arguments, Importing functions,
	Example programs
UNITII:	Conditions & Iterations (8L)
TOPICS	Conditions: Modulus operator, Boolean expression, Logical operators, if, if-else,
	if-elif-else, Nested conditions, Example programs.
	Iteration: while, for, break, continue, Nested loop, Example programs
UNITIII:	Recursion, Strings, List, Dictionaries, Tuples
TOPICS	Recursion:Python recursion, Examples of recursive functions, Recursion error,
	Advantages & disadvantages of recursion
	Strings: Accessing values in string, Updating strings, Slicing strings, String
	methods – upper(), find(), lower(), capitalize(), count(), join(), len(), isalnum(),
	<pre>isalpha(), isdigit(), islower(),isnumeric(), isspace(), isupper() max(), min(),</pre>
	replace(), split(), 2.5 Example programs
	List:Introduction, Traversal, Operations, Slice, Methods, Delete element,
	Difference between lists and strings.
	Dictionaries: Introduction, Brief idea of dictionaries & lists
	Tuples: Introduction, Brief idea of lists & tuples, Brief idea of dictionaries &
	tuples.
UNIT IV:	Data Structure using Array (4L)
TOPICS	Stack, queue, circular queue, priority queue, dequeue and their operations and
	applications.
UNITV:	Searching and Sorting (6L)
TOPICS	Searching: linear search, Binary search, their comparison, Sorting: insertion sort,
	Selection sort.Quick sort, Bubble sort Heap sort, Comparison of sorting methods
	, Analysis of algorithm, complexity using big 'O' notation
UNITVI:	Linked List (4L)
TOPICS	Linear link lists, doubly linked lists, stack using linked list, queue using linked
	list, circular linked listand their operations and applications.
UNITVII:	Trees (5L)
TOPICS	Binary trees, binary search trees, representations and operations, thread
	representations, sequentialrepresentations, B tree, B+ tree,
UNITVIII:	Graphs (5L)
TOPICS	Introduction to graphs, Definition, Terminology, Directed, Undirected &

B.Sc. (Hons) in Computer Science (Artificial Intelligence & Robotics)

	Weighted graph,
	Representation of graphs, Graph Traversal: Depth first search and Breadth first
	search. SpanningTrees, minimum spanning Tree, Shortest path algorithm
UNITIX:	Hashing (4L)
TOPICS	Definition, Hashing functions, Load factor and collision, open addressing (linear
	probing) and chaining method to avoid collision

Suggested Books:

- 1. Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser
- 2. Data Structures and Algorithmic Thinking with Python, NarasimhaKarumanchi
- 3. Python Data Structures and Algorithms: Benjamin Baka

SEMESTER: III

SI	Course Title	Code	Credit	Туре		
No		coue	create	L	Т	Р
1	Artificial Intelligence	1202231	6	3	1	4
2	Database Management System	1201232	6	4	0	4
3	Operating System & System Programming	1202233	6	3	1	4
4	Machine learning	1202134	6	3	1	4
5 Generic Elective		*	4	3	1	0
Total Credit			28			

SYLLABUS OUTLINE:

PAPER NAME: Artificial Intelligence

UNIT I:	Overview of Artificial intelligence- Problems of AI, AI technique, Tic – Tac – Toe
TOPICS	problem.
UNIT II:	Problems, Problem Space & search. Heuristic Search Techniques, Knowledge
TOPICS	representation issues. Representing knowledge using rules.
UNIT III:	Symbolic reasoning under uncertainty. Statistical reasoning. Weak slot & filler
TOPICS	structures. Strong slot & filler structures.
UNIT IV:	Game planning – Minimax search procedure, adding alpha beta cut-off's, iterative
TOPICS	deepening, Planning.
UNIT V:	Natural language processing, Understanding. Learning – induction & explanation
TOPICS	based learning. Expert systems- expert system shells, knowledge acquisition.
	Basic knowledge of programming language like Prolog & Lisp.

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI

3. Logic & Prolog Programming, Saroj Kaushik, New Age International

PAPER NAME: Database management System

UNITI:	Database System Concepts & Architecture:
TOPICS	Data Independence, Schemas, Instances, Database Languages, Database System
	Environments Data Models, Basic Structure of Oracle System, Storage
	Organization in
	Oracle.
UNITII:	Data Modelling:
TOPICS	Use of High -level Conceptual Data Models, ER Diagrams, Subclasses, Super
	classes and
	Inheritance, Specialization & Generalization, Conceptual Object Modelling
	using UML Class Diagrams, Knowledge Representation Concepts, Exercises.
UNITIII:	Relational Data Model:
TOPICS	Relational constraints, domain constraints, key constraints referential integrity
	Constraints, relational algebra, fundamental operations of relational algebra &
	their Implementation, interdependence of operations, example queries.
UNITIV:	ER and EER to Relational Mapping:
TOPICS	Mapping EER model concepts to relation, tuple relational calculus, domain
	relational Calculus queries.
UNITV:	Database Design:
TOPICS	Functional dependencies, irreducible sets of dependencies, loss less
	decomposition, 1st, 2 nd & 3 nd NF, dependency preservation, Boyce Codd NF,
	Multivalued Dependency & 4th NF, join Dependency & 5 NF, domain key
	normal form, restriction –union normal form, Denormalization.
UNITVI:	Query Processing And Optimization:
TOPICS	SQL Basic Queries in SQL, Sub queries, Retrieving a Query Plan – Table Space
	Span & I/O, Index Scan, Equal Unique Index Lookup, Clustered Vs. Non
	Clustered indexing, index Only Scan, Methods for Joining Tables – Nested Loop
	Join Merge Join, Hybrid Join, Multiple table Join, Transforming Nested Queries
	to Joins, Object Relational SQL, Procedural SQL, Introduction to Embedded
UNITVI	Transaction:
TOPICS	Transaction.
101105	Implementation of Transaction in Programs, Cursors and Transaction, Dynamic
	SOL Locking Levels of Isolation Recovery Checkpoints
	SQL, LOCKING LEVEIS OF ISOlation, Receivery, Checkpoints.

- 1. Fundamental of Database Systems- Elmasri Navathe- Pearson Education Asia
- 2. Database- Principles, Programming and Performance- Parick O' Neil Elizabeth O'Niel, Harcort Asia PTE Limited
- 3. An Introduction to Database Systems- C. J. Date, Addison Wesley, Pearson Education Press
- 4. Database System Concepts- Abraham Silberschat, Henry F. Korth, S.Sudarshan, Tata McGraw Hill.

DSE – 3: Operating System & System Programming

UNITI:	Introduction (3L)
TOPICS	Importance of OS, Basic concepts and terminology, Types of OS, Different
	views, Journey of a command execution, Design and implementation of OS
UNITII:	Process (10L)
TOPICS	Concept and views, OS view of processes, OS services for process management,
	Scheduling algorithms, Performance evaluation; Inter-process communication
	and synchronization, Mutual exclusion, Semaphores, Hardware support for
	mutual exclusion, Queuing implementation of semaphores, Classical problem of
	concurrent programming, Critical region and conditional critical region,
	Monitors, Messages, Deadlocks
UNITIII:	Storage Management (8L)
TOPICS	Memory Management- Backward, Swapping, Contiguous Memory Allocation,
	Paging, Segmentation, Segmentation with Paging.
UNITIV:	File-System Interface and Implementation (6L)
TOPICS	File Concept, Access Methods, Directory Structure, Protection, File-System
	Structure, File-System Implementation, Directory Implementation; Allocation
	Methods, Free-Space Management.
UNITV:	Mass-Storage Structure (4L)
TOPICS	Disk Structure; Disk Scheduling; Disk Management; Swap-Space Management
UNITVI:	Assemblers: Elements of Assembly Language Programming, Design of the
TOPICS	Assembler, Assembler Design Criteria, Types of Assemblers, Two-Pass
	Assemblers, One-Pass Assemblers, Single pass Assembler for Intel x86,
	Algorithm of Single Pass Assembler, Multi-Pass Assemblers
UNITVII:	Compilers: Causes of Large Semantic Gap, Binding and Binding Times, Data
TOPICS	Structure used in Compiling, Scope Rules, Memory Allocation,
	Compilation of Expression, Compilation of Control Structure, Code
	Optimization

- 1. Operating Systems, Galvin, John Wiley
- 2. Operating Systems, Milankovic, TMH
- 3. An Introduction to Operating System, Bhatt, PHI
- 4. Modern Operating System, Tannenbaum, PHI
- 5. Guide to Operating Systems, Palmer, VIKAS
- 6. Operating Systems, Prasad, Scitech

SEMESTER: IV

SI	Course Title	Code	Credit	Туре		
No				L	Т	Р
1	Computer Graphics & Multimedia	1201241	6	4	0	4
2	Software Engineering	1201141	4	3	1	0
3	Numerical Analysis	1192241	6	4	0	4
4	Natural language processing with Python	1201242	6	3	1	4
Total Credit			22			

SYLLABUS OUTLINE:

PAPER NAME: Computer Graphics & Multimedia

UNITI:	Overview of Graphics Systems:
TOPICS	Video Display Devices, Refresh Cathode Ray Tubes, Raster-Scan and Random-
	Scan Systems, Input Devices, Hard-Copy Devices and Graphics Software.
UNITII:	Output Primitives:
TOPICS	Points, Line Drawing Algorithms (DDA and Bresenham's Line Drawing
	Algorithm), Circle- Generating Algorithms (Bresenham's and Midpoint Circle
	Algorithms), Ellipse-Generating Algorithms(Midpoint Ellipse Algorithm only),
	Filled- Area Primitives: Scan –Line Polygon Fill Algorithm, Boundary-Fill
	Algorithm, Flood-Fill Algorithm.
UNITIII:	Two Dimensional Geometric Transformations:
TOPICS	Basic Transformations, Matrix Representations and Homogeneous Coordinates,
	Composite Transformations, Reflection and Shear, Transformations between
	Coordinates Systems, Raster Methods for Transformations.
UNITIV:	Two-Dimensional Viewing:
TOPICS	The Viewing Pipeline, Viewing Coordinate Reference Frame, Window-to-View
	Port Coordinate Transformation, Clipping- Point, Line(Cohan-0Sutherland Line
	Clipping and Liang –Barsky Line Clipping) and Polygon Clipping(Sutherland-
	Hodgeman Polygon Clipping).
UNITV:	Multimedia Systems Design:
TOPICS	Multimedia Elements, Multimedia Applications, Multimedia System
	Architecture, Evolving Technologies for Multimedia Systems, Multimedia Data
	Interface Standards, the Need for Data Compressions, Multimedia Database.
UNIT VI:	Data & File Format Standards:
TOPICS	Rich – Text Format, TIFF File Format, RIFF, MIDI File Format, JPEG DIB File
	Format, MPEG Standards.

- 1. D.Hearn & M. P. Baker -Computer Graphics C Version, 2nd Edition Pearson Education, New Delhi, 2006
- 2. J. F. Koegel Buferd Multimedia Systems, Pearson Education, New Delhi, 2006

- 3. R.A. Plastock et.al. Computer Graphics (Schaums Outline Series), 2nd Edition, TMH, New Delhi, 2006.
- 1. J.D.Foley- Computer Graphics, 2nd Edition, Pearson Education, New Delhi, 2004

PAPER NAME: Software Engineering

UNITI:	(12L)		
TOPICS	Overview of Computer Based Information System- TPS, OAS, MIS, DSS, KBS		
	Development Life Cycles- SDLC and its phases		
	Models- Waterfall, Prototype, Spiral, Evolutionary		
	Requirement Analysis and Specification, SRS		
	System analysis- DFD, Data Modeling with ERD		
UNITII:	(9L)		
TOPICS	Feasibility Analysis		
	System design tools- data dictionary, structure chart, decision table, decision tree.		
	Concept of User Interface, Essence of UML. CASE tool.		
UNIT Ⅲ :	(9L)		
TOPICS	Testing- Test case, Test suit, Types of testing- unit testing, system testing,		
	integration testing, acceptance testing Design methodologies: top down and		
	bottom up approach, stub, driver, black box and white box testing.		
UNITIV:	(10L)		
TOPICS	ERP, MRP, CRM, Software maintenance		
	SCM, concept of standards (ISO and CMM)		

Suggested Books:

- 1. System analysis and design, Igor Hawryszkiewycz, Pearson
- 2. Analysis and design of Information System, V Rajaraman, PHI
- 3. Software Engineering, Ian Sommerville, Addison-Wesley.

DSE4 – Numerical Analysis

Unit 1: Representation of numbers:

Round-off error, truncation error, significant error, error in numerical computation.

Unit 2: Solution of transcendental and algebraic equations:

Bisection, Regula-falsi, Fixed point, Newton Rephson.

Unit 3: Interpolation:

Newton's forward, backward, Lagrange's and divided differences.

Unit 4: Numerical differentiation:

Methods based on interpolations.

Unit 5: Numerical Integration:

Trapezoidal, Simpson's 1/3 rd. rule.

B.Sc. (Hons) in Computer Science (Artificial Intelligence & Robotics)

Unit 6: Solution of linear equations:

Direct methods – Gauss elimination, LU decomposition, Iteration methods- Jacobi, Gauss-Seidel.

Unit 7: Ordinary differential equations:

Single step method - Euler method, Runge-Kutta Method, multistep method.

Unit 8: Approximations:

Least square polynomial approximation.

Reference Books:

- 1. A. Gupta and S.C. Bose: Introduction to Numerical Analysis, Academic Publisher 3rded, 2013
- **2.** M.K. Jain, S.R.K.Iyenger and R.K. Jain: Numerical methods for scientific and Engineering Computations, New Age Internationals (P) Ltd, 1999.

Component: Lab Numerical Analysis Credits: 2

List of practical (using C/ C++)

1. Solution of transcendental and algebraic equations:

- a) Bisection method
- b) Newton Raphson method

2. Numerical Integration:

- a) Trapezoidal Rule
- b) Simpson's one third rule

3. Solution of ordinary differential equations:

- a) Euler method
- b) RungeKutta method (order 4)

PAPER NAME: Natural language processing with Python

UNIT I:	Introduction and Overview		
TOPICS	What is Natural Language Processing, Ambiguity and uncertainty in language.		
	The Turing test. Course outline and logistics.		
	Regular Expressions		
	Chomsky hierarchy, regular languages, and their limitations. Finite-state		
	automata. Practical regular expressions for finding and counting language		
	phenomena. A little morphology.		
UNIT II:	String Edit Distance and Alignment		
TOPICS	Key algorithmic tool: dynamic programming, first a simple example, then its use		
	in optimal alignment of sequences. String edit operations, edit distance, and		
	examples of use in spelling correction, and machine translation.		

UNIT III:	Context Free Grammars
TOPICS	Constituency, CFG definition, use and limitations. Chomsky Normal Form. Top-
	down parsing, bottom-up parsing, and the problems with each. The desirability of
	combining evidence from both directions.
UNIT IV:	Non-probabilistic Parsing
TOPICS	Efficient CFG parsing with CYK, another dynamic programming algorithm.
	Also, perhaps, the Earley parser. Designing a little grammar, and parsing with it
	on some test data.
UNIT V:	String Edit Distance and Alignment
TOPICS	Key algorithmic tool: dynamic programming, first a simple example, then its use
	in optimal alignment of sequences. String edit operations, edit distance, and
	examples of use in spelling correction, and machine translation.
UNIT VI:	Information Theory
TOPICS	What is information? Measuring it in bits. The "noisy channel model." The
	"Shannon game"motivated by language! Entropy, cross-entropy, information
	gain. Its application to some language phenomena.
UNIT VII:	Language modelling and Naive Bayes
TOPICS	Probabilistic language modelling and its applications. Markov models. N-grams.
	Estimating the probability of a word, and smoothing. Generative models of
	language. Their application to building an automatically-trained email spam
	filter, and automatically determining the language

Suggested Books:

SEMESTER: V

Sl	Course Title	Code	Credit	Туре		
NO				L	Т	Р
1	Introduction to Robotics	1203151	4	3	1	0
2	Embedded System Programming	1203252	6	4	0	4
3	Computer Networks	1203252	6	3	1	4
4	Intelligent agents and Smart Systems	1203153	4	3	1	0
5	Project – I on Robotics	1201451	6	0	0	12
Total Credit			26			

SYLLABUS OUTLINE:

PAPER NAME: Robotics

Foundations of Robotics are a challenging introduction to basic computational concepts used broadly in robotics. Topics include simulation, kinematics, control, optimization, and probabilistic inference. The mathematical basis of each area is

emphasized, and concepts are motivated using common robotics applications and programming exercises.

Suggested Books:

PAPER NAME: Computer Networks

UNITI:	Data Transmission Basic Concepts and Terminology: Data Communication
TOPICS	Model, Communication Tasks, Parallel & Serial Transmission, Transmission
	Models, Transmission Channel, Data Rate, Bandwidth Signal Encoding
	Schemes, Data Compression, Transmission Impairments, Layering and Design
	Issues, OSI Model, Services and Standards.
UNITII:	Computer Network: Network Topology, Performance of Network, Network
TOPICS	Classification,
	Advantages & Disadvantages of Network, Transmission Media (guided and
	unguided), Network Architecture, OSI Reference Model, TCP/IP, SNA and
	DNA.
UNITIII:	Data Line Devices: Modems, DSL, ADSL, Multiplexer and Different
TOPICS	Multiplexing Techniques: (FDM, TDM).
UNITIV:	Data Link Layer: Need for Data Link Control, Frame Design Consideration,
TOPICS	Flow Control & Error Control (Flow control mechanism, Error Detection and
	Correction techniques) Data Link Layer Protocol, HDLC.
UNITV:	Network Layer: Routing, Congestion control, Internetworking principles,
TOPICS	Internet Protocols (IPv4 packet format, Hierarchal addressing sub netting, ARP,
	PPP), Bridges,
	Routers.
UNITVI:	Physical Layer: Function and interface, physical layer standard, null modem.
TOPICS	
UNITVII:	Local Area Network: Definition of LAN, LAN topologies, Layered architecture
TOPICS	of LAN,
	MAC, IEEE standard. Ethernet LAN, CSMA, CSMA/ CD, Token passing LAN.
UNITVIII:	Network Security: Security Requirement, Data encryption strategies,
TOPICS	authentication protocols, Firewalls.
UNITIX:	Basic Applications: Telnet, FTP, NFS, SMTP, SNMP and HTTP.
TOPICS	

- 1. B. Fourauzan, "Data Communications and Networking", 4th Edition, Tata McGraw-Hill
- 2. William Stallings- Data & Communications, 6th Edition, Pearson Education
- **3.** Tanenbaum- Computer Networks, 3rd Edition, PHI, New Delhi.

PAPER NAME: Embedded System Programming

UNIT I:	INTRODUCTION TO EMBEDDED SYSTEM: History & need of Embedded	
TOPICS	System Basic components of Embedded System Programming Language	
	Classification of Embedded System Advantage & Disadvantage	
UNIT II:	MICROPROCESSOR & MICROCONTROLLER CLASSIFICATION	
TOPICS	Difference between Microprocessor & Microcontroller	
	Classification based on architecture	
	Memory Classification	
UNIT III:	REGISTERS & MEMORY OF AT89C51	
TOPICS	• Description of RAM	
	Description of CPU Registers	
	• Functions of SFR	
UNIT IV:	INTRODUCTION OF EMBEDDED C	
TOPICS	• Introduction to Embedded C	
	• Difference between C & Embedded C	
	Programming style	
	Basic structure of C program	
UNIT V:	CONSTANTS, VARIABLES & DATA TYPES	
TOPICS	• Keywords & Identifiers	
	• Data type & its memory representation	
	Arrays and strings	
UNIT VI:	OPERATORS	
TOPICS	• Types of Operators	
	Bitwise Operators explained	
UNIT VII:	CONTROL STRUCTURES & LOOPS	
TOPICS	•Decision making with if statement	
	• Ifelse statement	
	• Switch statement, and GOTO statement	
	• The while and Do – while statements	
LINUT VIII.	• For statement	
UNIT VIII:	FUNCTIONS Why Eurotions	
TOPICS	• Willy Functions • Types of Functions	
	• A Multi functional program	
	• Return values & their types	
LINIT IX	INTERFACING OF LED	
TOPICS	• Introduction of LED's	
101105	• Interfacing Circuit Description of LED's	
	• Programming of LED's Interfacing	
UNIT X:	INTERFACING OF SEVEN SEGMENT DISPLAY	
TOPICS	• Introduction to 7 Segment Display	
	• Types of 7 Segment Display	
	• Interfacing Circuit Description of 7 Segment Display	
	Programming of 7 Segment Display Interfacing	
UNIT XI:	INTERFACING OF LCD	
TOPICS	• Introduction to 16 x 2 LCD	
	Commands of 16 x 2 LCD	

B.Sc. (Hons) in Computer Science (Artificial Intelligence & Robotics)

	Interfacing Circuit Description of 16 x 2 LCD
	Programming of 16 x 2 LCD
UNIT XII:	INTERFACING OF SWITCHES & KEYBOARD MATRIX
TOPICS	Introduction to Switches & Keyboard Matrix
	Interfacing Circuit of Switches & Keyboard Matrix
	Programming of Keyboard Matrix & Switches
	• Controlling of LED's by using Switches
	Key board Matrix & LCD Interfacing Program

Suggested Books:

PAPER NAME: Project – I on Robotics

SEMESTER: VI

SI	Course Title	Code	Credit	Туре		
NO				L	Т	Р
1	Elective -I	1202261	4	3	1	0
2	Elective -II	1202262	4	3	1	0
3	Project Work II/ Dissertation	1201461	8	0	0	16
	Total Credit		16			

Elective -I

- Big data
- Cyber security
- System Architecture and Internet of Things
- Cloud Computing
- •

Elective -II

- Deep Learning
- Parallel Computing for AI & ML
- Machine Vision
- Mechatronics